WT p53, but not tumor-derived mutants, bind to Bcl2 via the DNA binding domain and induce mitochondrial permeabilization.

نویسندگان

  • York Tomita
  • Natasha Marchenko
  • Susan Erster
  • Alice Nemajerova
  • Alexander Dehner
  • Christian Klein
  • Hongguang Pan
  • Horst Kessler
  • Petr Pancoska
  • Ute M Moll
چکیده

The induction of apoptosis by p53 in response to cellular stress is its most conserved function and crucial for p53 tumor suppression. We recently reported that p53 directly induces oligomerization of the BH1,2,3 effector protein Bak, leading to outer mitochondrial membrane permeabilization (OMMP) with release of apoptotic activator proteins. One important mechanism by which p53 achieves OMMP is by forming an inhibitory complex with the anti-apoptotic BclXL protein. In contrast, the p53 complex with the Bcl2 homolog has not been interrogated. Here we have undertaken a detailed characterization of the p53-Bcl2 interaction using structural, biophysical, and mutational analyses. We have identified the p53 DNA binding domain as the binding interface for Bcl2 using solution NMR. The affinity of the p53-Bcl2 complex was determined by surface plasmon resonance analysis (BIAcore) to have a dominant component KD 535 +/- 24 nm. Moreover, in contrast to wild type p53, endogenous missense mutants of p53 are unable to form complexes with endogenous Bcl2 in human cancer cells. Functionally, these mutants are all completely or strongly compromised in mediating OMMP, as measured by cytochrome c release from isolated mitochondria. These data implicate p53-Bcl2 complexes in contributing to the direct mitochondrial p53 pathway of apoptosis and further support the notion that the DNA binding domain of p53 is a dual function domain, mediating both its transactivation function and its direct mitochondrial apoptotic function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Investigation of R213G Mutation in DNA-Binding Domain of P53 Protein via Molecular Dynamics Simulation

Introduction: P53 is a tumor suppressor protein with numerous missense mutations identified in its gene. These mutations are observed in a vast number of cancers. R213G is one of them which has a role in metastatic lung cancers. In this research, R213G was studied in comparison with the wild type via molecular dynamics simulation. Method: For the three-dimensional structure of the wild-type P53...

متن کامل

Comparative Investigation of R213G Mutation in DNA-Binding Domain of P53 Protein via Molecular Dynamics Simulation

Introduction: P53 is a tumor suppressor protein with numerous missense mutations identified in its gene. These mutations are observed in a vast number of cancers. R213G is one of them which has a role in metastatic lung cancers. In this research, R213G was studied in comparison with the wild type via molecular dynamics simulation. Method: For the three-dimensional structure of the wild-type P53...

متن کامل

Protein phosphatase 2A inactivates Bcl2's antiapoptotic function by dephosphorylation and up-regulation of Bcl2-p53 binding.

Bcl2 is associated with chemoresistance and poor prognosis in patients with various hematologic malignancies. DNA damage-induced p53/Bcl2 interaction at the outer mitochondrial membrane results in a Bcl2 conformational change with loss of its antiapoptotic activity in interleukin-3-dependent myeloid H7 cells. Here we find that specific disruption of protein phosphatase 2A (PP2A) activity by eit...

متن کامل

CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53

Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...

متن کامل

A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain.

The p53 protein is related by sequence homology and function to the products of two other genes, p63 and p73, that each encode several isoforms. We and others have discovered previously that certain tumor-derived mutants of p53 can associate and inhibit transcriptional activation by the alpha and beta isoforms of p73. In this study we have extended these observations to show that in transfected...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 281 13  شماره 

صفحات  -

تاریخ انتشار 2006